
Polaris Range EXtender Technology (REX)

National Defense Industrial Association
Joint Service Power Expo
Myrtle Beach, SC
May 5th, 2011

Polaris Intellectual Property – All Designs Protected by Patents Approved and Patents Pending – REX Technology

The Fuel Efficiency Problem

ESR Index Established - 2008

FOB use of fuel, 2004-2009: 50M to 500M gallons

Afghanistan:
"...each gallon
of fuel costs 7
gallons to
transport"

Fmr CIA Director Woolsey: "getting gas to an M1A1 in Fallujah...costs up to \$100 a gallon or more"

"70% of the tonnage delivered to deployed forces is fuel" – Rep. Roscoe Bartlett, R, MD-6 Feb 2011 -PM-JLTV: Fully burdened cost of fuel in Afghanistan is \$330/gallon

IMPACTS of Saving 1% Fuel

\$5-82B

Fewer Dollars Spent on Fuel

6,444

Fewer Soldier Trips

37

Fewer Casualties

GEN Dunwoody, TWV Conference, 2011

The Warfighter's Load Problem

2005-2010

2001-ongoing

Soldier Weight and Equipment Increases

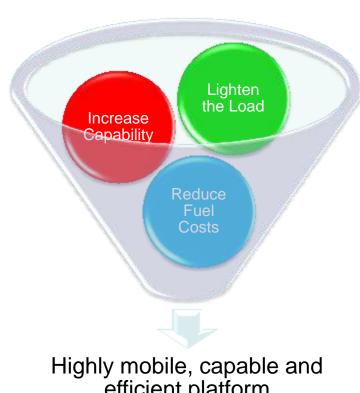
IEDs force supply lines off roads – aviation used to ship supplies

"Clear and Hold" Strategy moves into more rugged terrain

2007- Iraq; 2009 - Afghanistan

- ➤ Combat Load in 1991: 60lbs; Today: 130lbs
- ➤ Batteries for a 3 week patrol, Marine Squad: 700lbs
- ➤ Doctrine in 1991: Air/Land, Force on Force; Today: Asymmetric, IED-laden LoCs, avoid the heavy vehicles on predictable roads of travel

Case Study: Military Use - ATV/UTVs

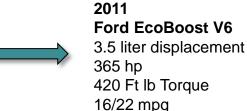

- √ 1992: 1st use of ATVs by the military
- ✓ 2002: TF Dagger requests 1st
 Militarized ATV
- ✓ 2007: 1st Militarized Side-by-Side Class Vehicle – IDF incorporates into TOE and Doctrine
- √ 2009: 1st Militarized strike / recon platform for JSOTF-A
- ✓ 2010: 1st Militarized LSEV
- ➤ 2011: The REX Technology

Convergence of the Problem Sets

- All-terrain, on/off-road, load bearing tactical vehicle
- Quiet, stealth modes
- Longer range (fossil & EV)
- Increased auxiliary power requirements
- Unmanned building block options
- > Stand alone, dismounted power generation
- Quick, COTS technology with low fuel costs

efficient platform

The Polaris REX Technology


Emissions and Fuel economy Trends in the Automotive Powertrains

- Emissions reduction and fuel economy needs are driving a fundamental shift in Internal Combustion Engine efficiency and power density
- Trend toward reduced emissions, same power from smaller engines

2010 Ford Triton V8 5.4 liter displacement 310 hp 365 Ft lb Torque 14/20 mpg

Current Technical Paths to Reduce Emissions and Fuel Consumption

Engine downsizing

Reduced displacement and cylinder count

Turbocharging

Increase power density

Driveline efficiency Increase

- Reduced parasitic losses for accessories
- Reduce friction in engine

Engine start/stop capability

Integrated starter/generators

Driveline electrification

- Battery powered electric vehicles
- Parallel and serial hybrids

Limitations on Electric Vehicle Utility

- Vehicle range is limited by battery capacity
- Vehicle utility is limited by recharging time
- Relatively poor power density for batteries
- No widespread recharging infrastructure
- Add-on cost of batteries
- Weight and packaging considerations of batteries
- Range Anxiety presents obstacle to increased adoption of electric vehicles for on-road use

Hybrids are a bridging technology between pure electric and internal combustion powered vehicles

Polaris REX Technology

- Combines advances in powertrain downsizing and efficiency with electric vehicle technology to increase vehicle utility
- Uses existing, proven technology
- Allows for the best combination of vehicle range and emission reduction and fuel efficiency
- Leverages existing fuel infrastructure for electric vehicles with 'instant' recharging capability

A Better Bridge

Traditional Parallel Hybrids

- Internal combustion engine is sized to handle transient acceleration loads
- Engine nearly as large as engine in traditional internal combustion powered vehicles
- Due to its size the engine runs in a low efficiency region for much of its operating range
- Engine size compounds vehicle packaging challenges
- Engine size increases vehicle cost

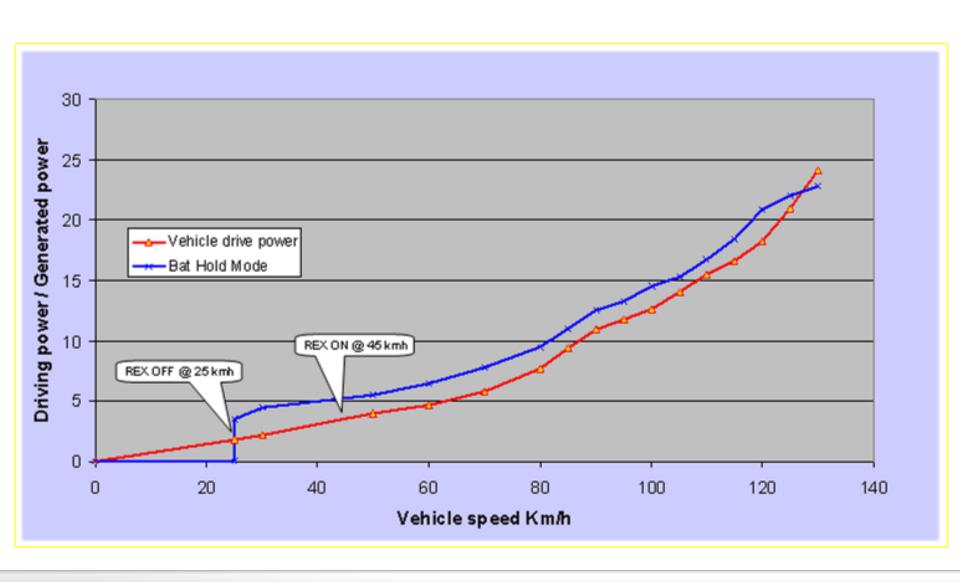
Current Hybrid Solutions Tend to be ENGINE DOMINANT

A New Approach

- Create a battery dominant hybrid electric vehicle
- Utilize battery for transient acceleration needs
- Size the engine to maintain battery SOC during steady-state driving
 - Incorporate aggressive regenerative braking strategy
- Utilize engine downsizing technology to provide best combination of high power density and small package size for the internal combustion engine
 - Engine maintains battery SOC only
 - Series hybrid

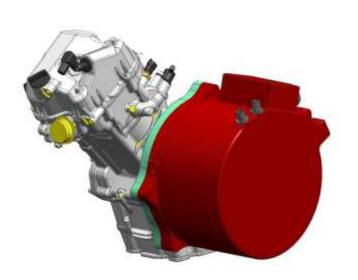
Technology Demonstrator

- Polaris REX technology demonstrator based on a European-market VW Polo
 - Up to 500 miles operating range
 - Emissions certification levels lower than a Chevy Volt or Toyota Prius
 - Aerodynamic improvements to reduce 'pure losses'
 - Aggressive braking regeneration strategy



Polaris Electric Vehicle REX Strategy

- Powertrain and battery pack is sized for the needs of typical duty cycle
- Transient acceleration needs are met with the battery
 - Partially recovered with regenerative braking
- REX generator sized to slightly exceed average vehicle power needs in typical usage
- No need for remote charging infrastructure
 - The existing gasoline infrastructure is utilized for 'instant' battery recharging via an on-board ICE REX recharging system
- On-board REX recharging system is downsized in displacement as much as possible to increase the efficiency, minimize emissions, and maximum fuel economy
- The battery capacity is reduced from that of a pure electric car since the REX system provides increased range.
- Battery capacity is sized to receive the maximum benefit from the 'electric only' range for the emissions certification.
- Battery reduction strategy also has the benefit of reducing cost and vehicle weight



Polaris Range Extender Package

- Single cylinder
- Integrated generator
- 325cc displacement
- 38 kg weight
- 22kW electrical output
- Port fuel injection
- Low friction design
- Compact space saving design

Polaris REX Engine

REDUCED WEIGHT - integrated crankshaft drive and mounting system for generator

REDUCED WEIGHT - Generator acts as flywheel, dynamic balancer, and starter for engine

REDUCED PARASITIC LOSSES - No oil pump

REDUCED FRICTION - All rotating members mounted on roller bearings

REDUCED PARASITIC LOSSES - Crankshaft and cam chain distribute oil to cylinder head

INCEASED EFFICIENCY -Small 325cc displacement allows engine to run at its lowest consumption range

LOWER EMISSIONS – Oil sump preheated by drive motor coolant

Application of REX technology to Off-Road Vehicles

- Technology demonstrator based on Polaris Ranger EV
- Utilize Polaris 22kW REX engine and generator
 - Relatively higher power needs due to poor aerodynamics and 4 wheel drive system
 - Drive strategy reconfigured for off-road use

Results

- 3X better fuel economy than gas powered Ranger 800
- Up to 50 mph top speed
- Reduced battery capacity
- 10X driving range increase of base Ranger EV

Ranger Hybrid Operating Modes

- Three driving modes
 - Pure electric
 - Approximately 30 mile range depending on duty cycle
 - Reduced IR signature
 - Quiet operation
 - Extended range REX mode with power limit for fuel economy
 - REX mode with power boost for increased acceleration
- Stationary power generation mode
 - Up to 22kW power generation
 - Configurable in 12/24 V DC and 110/220 V AC

Future Developments

- V-twin gas engine for higher power needs
- Heavy fuel engines up to 45 hp
- Apply REX Hybrid concept to higher capability vehicle platforms
 - Ranger Crew
 - RZR 4
- Develop 300V applications for higher efficiency and generation capacity

Conclusion

- Problem Statements are clear!
 - Increase Efficiency
 - Increase Capability
 - Lighten the Load

 REX Offers a Polaris-solution, based on 16 years of work with the US and Worldwide Militaries and Special Forces

 Outside the Box thinking, rapid prototyping, and the use of COTS technology make this possible

Questions?

Mr. Stacey Stewart

Director, Powertrain

stacey.stewart@polarisind.com

Mr. Brian Gross
Program Lead, Engineering
brian.gross@polarisind.com

Mr. Patrick Weldon
Manager, Business Development
patrick.weldon@polarisind.com